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Abstract
Multi-component gas diffusion in the continuum flow regime is often
modelled using the Stefan–Maxwell (SM) equations. Recent advances in
lattice Boltzmann (LB) mass diffusion models have made it possible to
directly compare LB predictions with solutions to the SM equations. In this
work, one-dimensional (1D) and two-dimensional (2D), equi-molar
counter-diffusion of two gases in the presence of a third, inert gas is studied.
The work is an extension and validation of a recently proposed binary LB
model for components having dissimilar molecular weights. The treatment
of inflow and outflow boundary conditions (for specifying species mole
fractions or mole flux) is developed via the averaging of component
velocities before and after collisions. Results for one and two spatial
dimensions have been compared with analytic and numerical solutions to
the SM equations and good agreement has been found for a wide range of
parameters and for large variations in molecular weights. A novel molecular
weight tuning strategy for increasing the accuracy has been demonstrated.
The model developed can be used to model continuum, multi-component
mass transfer in complex geometries such as porous media without
empirical modification of diffusion coefficients based on porosity and
tortuosity values. An envisioned application of this technique is to model
gas diffusion in porous solid oxide fuel cell electrodes.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Multi-component mass diffusion through porous media is of
importance in many applications including flow of gases in fuel
cell electrodes [1], permeation of gases through polymer films
used for food packaging [2] and transport of gases through
soil [3] to name a few. Modelling of this phenomenon at the
continuum level is usually carried out using Fick’s law for
binary diffusion and via the Stefan–Maxwell (SM) equations
for diffusion involving more than two species. Recently, the
lattice Boltzmann (LB) method [4] has shown considerable

1 Author to whom any correspondence should be addressed.

promise in simulating fluid flow and mass diffusion through
complex flow passages. The present work examines a recently
proposed LB scheme [5] that can simulate mass diffusion in
a binary mixture with different molecular weights. This work
extends the LB model to three species, develops a suitable
and accurate treatment for imposing boundary conditions and
validates the LB model with solutions to the SM equations.
These validations are performed for two simplified cases: 1D
diffusion of three species with no solid obstructions and 2D
diffusion of two species in the presence of a square obstacle.
While these cases were chosen so that LB solutions could
be compared with solutions to the SM equations, the method
developed here is quite general and is able to simulate diffusion
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Figure 1. Schematic of mass diffusion through a porous medium.

through a considerably more complex geometry. An extension
of the method proposed in this article to three dimensions (3D)
is possible but a detailed discussion is beyond the scope of this
paper.

The mass diffusion problem considered in this study is
illustrated in figure 1 where three species diffuse through
a porous medium. On the left boundary (x = 0) the
total concentration and mole fractions of all three species is
specified. On the right boundary (x = L) the species mole
flux is specified. A special case is considered where the mole
flux of species 1 is equal and opposite to that of species 2. The
third species is assumed to be inert and thus it has no net mass
transfer in or out of the system at steady state. The special
case considered here is sometimes referred to as equi-molar
counter-diffusion. Periodic boundaries are used at the bottom
and top of the domain (z = 0 and H , respectively). Several
immovable and impermeable solid obstacles can be present in
the domain and these allow no mass diffusion (of any species)
normal to their surface. In addition, it is assumed that there is
no pressure or thermal diffusion and the total concentration of
species remains constant throughout the domain. The problem
illustrated in figure 1 can be simplified to a 1D problem if all
obstacles are removed and there is no variation of species mole
fractions at x = 0 along the z direction.

The paper is organized as follows. In section 2, the SM
equations are introduced and solution procedures for a 1D case
without obstacles and a 2D case with a square obstacle are
discussed. These solutions are used to validate results from
the LB model. A detailed discussion of the LB method is
given in section 3. Results are summarized in section 4 and the
main conclusions that emerged from this study are presented
in section 5.

2. Stefan–Maxwell model

The problem of mass diffusion in a mixture of two species
is usually described by Fick’s law of diffusion [6] given in
equation (1), where Ji is the mole flux of species i, cT is the
total molar concentration, Xi is the mole fraction of species i

and D is the diffusion coefficient between the two species.

Ji = −cT D∇Xi. (1)

Physically, equation (1) states that any species in a mixture
will diffuse from regions of higher concentration of that

particular species to regions of lower concentration. However,
when more than two species are involved, the mass transport
becomes more complex and is usually described by the
Stefan–Maxwell (SM) equations. The SM equations for an
ideal gas mixture consisting of N species are given by [6]

− ∇Xi =
N∑

j = 1
j �= i

Xj Ji − XiJj

cT Dij

, (2)

where Dij is the mass diffusivity between species i and
species j . It can be seen that equation (1) is a special case
of equation (2) when N = 2, J1 + J2 = 0 (equi-molar counter-
diffusion) and D12 = D21.

In general the SM equations are difficult to solve
directly as they appear in equation (2). Simplified forms of
equation (2) are therefore discussed in what follows as these
are amenable to analytical or numerical solution. The first
simplified case examined is a 1D case where species 1 and 2
counter diffuse through each other in the presence of a third,
inert species. In addition, the counter-diffusion of species 1
and 2 is equi-molar (J1 = −J2 = J ) and along a single spatial
direction, x. For this special case, equation (2) simplifies to a
set of coupled ordinary differential equations given by

dX1

dx
= −

[
X1 + X2

D12
+

X3

D13

]
J

cT

, (3)

dX2

dx
= +

[
X1 + X2

D21
+

X3

D23

]
J

cT

, (4)

dX3

dx
= X3

[
1

D31
− 1

D32

]
J

cT

. (5)

Based on specified values of species mole fractions
{X1, X2, X3} at x = 0 and specified mole flux J at x = L,
equations (3)–(5) can be solved numerically or analytically
resulting in mole fraction profiles for all the three species. Note
that by reciprocity D12 = D21, D23 = D32 and D13 = D31.
These 1D solutions will be used to validate LB model results
in section 4.1.

The second simplified case is a 2D case with only two
species and with constant diffusivity D12 = D21 = D. If
the condition of equi-molar counter-diffusion still holds, the
SM equations reduce to Fick’s law of diffusion (equation (1)).
Invoking the law of conservation of mass, ∇ · Ji = 0 =
−cT D∇2Xi . Thus the mole fraction distribution for any
species is governed by the Laplace equation (LE)

∇2Xi = 0. (6)

Equation (6) can be solved numerically to obtain mass fraction
distributions for a given solution domain and a set of boundary
conditions. This 2D solution is compared with LB model
results in section 4.2.

3. Lattice Boltzmann model

The LB method used in this work is based on the two-
fluid model initially proposed by Luo and Girimaji [7] and
extended to components having different molecular weights
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by McCracken and Abraham [5]. A detailed discussion
and validation of the LB model for binary diffusion can
be found in these publications [5, 7] and is not repeated
here. This section describes a further extension of the LB
model to three components, a novel treatment of inflow and
outflow boundary conditions (for specifying mole fraction and
mole flux as indicated in figure 1) and further improvement in
the numerical stability of the scheme so that species with large
differences in molecular weight can be accurately modelled.
For completeness, treatment of impermeable obstacles using
the bounce-back rule is also discussed.

3.1. Three-species LB model

Unlike conventional computational fluid dynamics (CFD)
methods that use fluid density, velocity and pressure as the
primary variables, the LB method uses a more fundamental
quantity called the particle velocity distribution function
(PDF). The PDF f i

α at any spatial location x and time t

is defined as the number of particles of species i travelling
with a velocity ei

α along the direction α. The LB method
consists of two basic steps that are carried out at each
location (lattice point) on the numerical grid (lattice) covering
the solution domain: streaming and collision. Streaming
represents movement of particles of each species with a
velocity of ei

α along specified lattice directions α, while
collision represents interactions between particles of the same
or of different species as they arrive at the lattice point at x
from neighbouring points. These steps are combined together
in equation (7), the so-called LB equation, written for species
i (=1, 2 or 3).

f i
α(x + ei

α, t + 1) = f i
α(x, t) + �i

α(x, t). (7)

In equation (7), �i
α represents the collision term, which will

be described in detail shortly. For the D2Q9 model [8], the
velocity set e1

α for species 1 (having the least molecular weight)
is given by equation (8) and indicated in figure 2(a). For a 3D
case, it is recommended that the D3Q19 model [8] be adopted
but all the derivations in this section are presented for the D2Q9
model.

e1
0 = (0, 0) e1

1 = (1, 0) e1
2 = (1, 1)

e1
3 = (0, 1) e1

4 = (−1, 1) e1
5 = (−1, 0)

e1
6 = (−1, −1) e1

7 = (0, −1) e1
8 = (1, −1). (8)

For the remaining species, as per the different lattice speed
(DLS) scheme [5], these velocities are obtained using
equation (9). The development assumes that diffusion occurs
at a constant temperature, and the average kinetic energy of
all species is constant. Thus, a heavier species has a lower
magnitude of ei

α . It can be assumed without loss of generality
that species 1 is the lightest species. The remaining species
are ordered such that M1 � M2 and M1 � M3.

e2
α = e1

α

√
M1

M2
e3
α = e1

α

√
M1

M3
. (9)

Note that the lattice in figure 2(a) is designed such that node
spacing is the same as e1

α , so particles of species 1 stream
to neighbouring nodes in a single time-step, while particles of

(a)

(b)

(c)

Figure 2. (a) D2Q9 velocity model for species 1 (lightest species),
(b) interpolation scheme for species 2 or 3 for the direction α = 2,
(c) types of lattice points on the obstacle boundary.

species 2 and 3 stream a shorter distance to off-lattice locations
during the same time interval. The streamed values of f 2

α and
f 3

α at lattice locations are obtained via interpolation. In lieu
of the more complex second-order interpolation scheme [5], a
simple bi-linear interpolation has been used here for simplicity.
Streaming is thus carried out in two steps: in the first step, PDFs
for species 1 are streamed from lattice sites to adjacent lattice
sites, while PDFs for species 2 and 3 stream from lattice sites
to off-lattice sites. In the second step, interpolation is used to
determine PDF values for species 2 and 3 at lattice sites. As an
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example, figure 2(b) indicates how the PDF f 2
α is interpolated

at different lattice points. The location of the lattice point (dark
square) where interpolation is to be carried out is specified by
the fractions ξ and η. The interpolated value FO at point O in
terms of the values F1, F2, F3 and F4 at the locations indicated
in figure 2(b) is given by

FO = (1 − ξ)(1 − η)F1 + ξ(1 − η)F2 + (1 − ξ)ηF3 + ξηF4.

(10)

For lattice points on the domain boundaries, or on solid
obstacles (figure 2(c)), streaming can occur to fictitious points
outside the domain or inside solid obstacles in order to
interpolate PDF values at the boundary nodes. If the D3Q19
model is adopted for the 3D case, equation (10) can still be used
because base velocities in the D3Q19 model are restricted to
three mutually perpendicular planes and equation (10) applies
for interpolations in each plane.

At any given lattice point, taking appropriate moments
of the PDF over velocity space leads to the particle density
and velocity. The species particle density ni is obtained using
equation (11) and the total number density n is obtained using
equation (12).

ni = f i
0 + f i

1 + f i
2 + f i

3 + f i
4 + f i

5 + f i
6 + f i

7 + f i
8 , (11)

n = n1 + n2 + n3. (12)

If Mi is the molecular weight of species i, the mass density of
that species ρi and the total mass density ρ are obtained from
equations (13) and (14), respectively.

ρi = Mini, (13)

ρ =
3∑

i=1

ρi. (14)

For species i, the velocity ui used in the equilibrium function
is obtained using equation (15). However, the species
velocity u′

i used to compute mole flux is evaluated using
equation (16), following Shan and Doolen [9]. For consistency,
equation (16) is also used in deriving inflow and outflow
boundary conditions. The mole flux Ji and mass-averaged
mixture velocity u are calculated using equations (17) and (18),
respectively. The velocity of all species at solid obstacles is
reset to zero at each time step.

niui =
8∑

α=0

f i
αei

α, (15)

4niu′
i =

(
4 − 1

τij

− 1

τik

) 8∑
α=0

f i
αei

α

+

(
1

τij

+
1

τik

) 8∑
α=0

f i,eq
α ei

α, (16)

Ji = niu′
i , (17)

ρu = ρ1u1 + ρ2u2 + ρ3u3. (18)

Unlike molecular dynamics, which tracks motions of
individual molecules, the LB method tracks the statistical
behaviour of a large number of molecules at each lattice

point. The velocity in equations (15) and (16) thus represents
the average velocity of a large number of molecules of
species i. The equilibrium functions f

i(eq)
α and f i(0)

α are
calculated using equations (19) and (20), respectively.

f i(eq)
α = ωαni

[
1 +

ei
α · u

c2
s,i

+
(ei

α · u)2

2c4
s,i

− u · u

2c2
s,i

]
, (19)

f i(0)
α =

[
1 +

(ei
α − u) · (ui − u)

c2
s,i

]
f i(eq)

α . (20)

For the D2Q9 model, the weight functions ωα in equation (19)
are given by [8]

ω0 = 4/9, ω1 = ω3 = ω5 = ω7 = 1/9,

ω2 = ω4 = ω6 = ω8 = 1/36. (21)

In the DLS model [5], the dimensionless speed of sound cs

is different for each species and these different speeds are
given by

cs,1 = 1√
3
, cs,2 = 1√

3

√
M1

M2
, cs,3 = 1√

3

√
M1

M3
.

(22)

The collision term �i
α for species i along direction α, appearing

in equation (7), consists of three different terms, one describing
self-collision and the others describing collision with the other
two species, as shown in equation (23).

�1
α = �11

α + �12
α + �13

α ,

�2
α = �21

α + �22
α + �23

α ,

�3
α = �31

α + �32
α + �33

α .

(23)

The self-collision terms for species 1, 2 and 3 are given by
equations (24). These represent collisions between particles
of the same species.

�11
α = −

(
f 1

α − f 1(0)
α

τ1

)
, �22

α = −
(

f 2
α − f 2(0)

α

τ2

)
,

�33
α = −

(
f 3

α − f 3(0)
α

τ3

)
. (24)

The cross-collision terms given by equation (25) represent the
effect of collisions between particles of different species and
arise only when there is more than one species and the relative
velocity between particles of different species is non-zero. In
particular, the cross-collision terms are all zero at lattice points
on the surface of solid obstacles.

�ij
α = − 1

τ
ij

D

(
ρj

ρ

)
f

i(eq)
α

c2
s,i

(ei
α − u) · (ui − uj ). (25)

Note that there are two sets of relaxation times in this
LB scheme. The first set {τ1, τ2, τ3} appearing in equation (24)
controls the kinematic viscosity νi of species i via the
relationship νi = (2τi − 1)/6. Unless mentioned otherwise,
all these have been set to unity in this work (τ1 = τ2 = τ3 = 1).
The second set {τ 12

D , τ 23
D , τ 31

D } appearing in equation (25)
controls the inter-species diffusivities via the relation

Dij = ρP

n2MiMj

(
τ

ij

D − 1

2

)
. (26)
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The total pressure P appearing in equation (26) is obtained
using

P = ρ1c
2
s,1 + ρ2c

2
s,2 + ρ3c

2
s,3. (27)

Using equations (22) and (27), it can be shown that

P = M1n/3. (28)

It can be seen from equation (28) that if the total pressure
remains constant, the total concentration n also remains
constant. This is true even when the molecular weights of
diffusing species are different. Substituting equation (28)
in (26), it can be shown that for any two species i and j ,

Dij = M1

MiMj

[ρ

n

] (
2τ

ij

D − 1

6

)
. (29)

Rearrangement of equation (29) leads to equation (30), which
is used in practice to calculate relaxation times at different
lattice points, given specified values of the diffusivities.

τ
ij

D = 1

2
+ 3Dij

MiMj

M1

[
n

ρ

]
. (30)

To avoid numerical instability in the LB method, it is
recommended that the diffusivity values be scaled up such that
the relaxation times are of the order of unity.

3.2. Treatment of concentration and flux boundaries

As shown in figure 1, mole fractions {X1, X2, X3} (particle
densities) are specified at x = 0 and mole flux J (particle
velocity) is specified at x = L. Unlike traditional
CFD methods based on the Navier–Stokes equations, where
boundary conditions are directly prescribed on the velocity
and density, boundary conditions in the LB model need to
be prescribed indirectly using the PDF. In this section, the
inflow and outflow conditions on the PDF are derived based
on the particle velocity, equation (16). The basic sets of
equations needed are equations (11) and (16). Since the base
velocities can be different for each species, a modified velocity

ũ′
i = u′

i

√
Mi

M1
and a relaxation parameter φ =

(
1
τij

+ 1
τik

)
are

defined. Using these definitions, equation (16) can be written
as two sets of equations, along the x and z axes and these are
given by (subscript i is dropped for clarity)

4nũ′
x = (4 − φ)(f1 + f2 + f8 − f4 − f5 − f6)

+ φ(f
(eq)

1 +f
(eq)

2 + f
(eq)

8 −f
(eq)

4 − f
(eq)

5 − f
(eq)

6 ), (31)

4nũ′
z = (4 − φ)(f2 + f3 + f4 − f6 − f7 − f8)

+ φ(f
(eq)

2 + f
(eq)

3 + f
(eq)

4 −f
(eq)

6 − f
(eq)

7 − f
(eq)

8 ). (32)

The last boundary condition needed is equation (11). Based
on a treatment similar to that used by Zou and He [10],
equations (11), (31) and (32) can be used to determine unknown
PDF values at the inlet and outlet. The particle density is
specified at x = 0 and the x-component of particle velocity
is specified at x = L. The z-component of velocity is
extrapolated from the domain interior at both the concentration
(x = 0) and flux (x = L) boundaries.

Thus, at x = 0, the unknown PDF values after streaming
(refer to figure 2(a)) are {f1, f2, f8}. The values of equilibrium

functions in equations (31) and (32) are calculated from the
previous time-step and are thus known quantities. Defining

S1 = f
(eq)

1 + f
(eq)

2 + f
(eq)

8 − f
(eq)

4 − f
(eq)

5 − f
(eq)

6 , (33)

S2 = f
(eq)

2 + f
(eq)

3 + f
(eq)

4 − f
(eq)

6 − f
(eq)

7 − f
(eq)

8 , (34)

equations (11), (31) and (32) can be rearranged to give

f1 + f2 + f8 = n − (f0 + f3 + f4 + f5 + f6 + f7), (35)

f1 + f2 + f8 = f4 + f5 + f6 +

[
4nũ′

x − φS1

4 − φ

]
, (36)

f2 − f8 = −f3 − f4 + f6 + f7 +

[
4nũ′

z − φS2

4 − φ

]
. (37)

Equating the right-hand side of equations (35) and (36), it is
seen that

n = [
(4 − φ)(f4 + f5 + f6) + (4 − φ)(f0 + f3 + f4 + f5

+f6 + f7) − φS1
][

(4 − φ) − 4ũ′
x

]−1
. (38)

If the particle velocity is specified, equation (38) is used to
obtain the particle density and vice versa. Next, to obtain f1,
it is assumed that [10] f1 − f

eq
1 = f5 − f

eq
5 and this leads to

f1 = f5 +
2nux

9C2
s,i

. (39)

Note that the velocity component used in equation (39)
is the mass-averaged mixture velocity from equation (18).
Substituting equation (39) in (36),

f2 + f8 = f4 + f6 +

[
4nũ′

x − φS1

4 − φ

]
− 2nux

9C2
s,i

. (40)

Equations (37) and (40) can now be solved simultaneously to
obtain f2 and f8. A similar procedure is followed at the right
boundary to determine the unknown values {f4, f5, f6}. The
implementation of these boundary conditions is carried out at
each lattice point on the left and right boundaries. However,
if an obstacle is present at the boundary, the bounce-back
condition is implemented at that lattice point, as discussed
in section 3.3. It is found that the stability of the scheme
just discussed may improve if the equilibrium terms defined
by equations (33) and (34) are calculated using an average
value between two successive time steps. Care should be
taken when specifying the mole flux of species 2 and 3 and
in extrapolating the velocities at the left and right boundaries
because the species velocity ũ′

i is used in boundary condition
calculations. When the boundary condition implementation
discussed in this section is adapted to the D3Q19 model in
3D, the number of unknown PDFs is found to be more than
the number of available equations. In this case, an iterative
solution procedure can be used to obtain these unknown PDFs
at a given time level.
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3.3. Treatment of impermeable obstacles

Obstacles within the flow domain are treated like impermeable
solids with zero mass flux in a direction normal to their
surface. The zero normal flux condition is usually sufficient
for conventional mass transfer models based on the Ficks
law of diffusion or the Stefan–Maxwell equations. However,
drawing a line between pure diffusion and convection is
not so convenient in the LB method because it is based on
tracking individual particles (representing a large number of
molecules). The LB method makes no conceptual distinction
between the transport of a single species flowing/diffusing over
an obstacle and multiple species flowing/diffusing in opposite
directions over the same obstacle. The only difference is that
when there are multiple species, they can impede the motion of
each other because of inter-particle collisions. The LB method
thus operates at a more fundamental level and provides an
opportunity to provide a more rigorous physical interpretation
of how particles of each species behave when they encounter
a solid wall.

In order to model particle–wall interaction, three different
boundary conditions (no-slip, free-slip and diffuse reflection)
are tested. In the no-slip interaction, particle populations
encountering a wall are reflected back in the direction from
which they arrive (bounce-back). For the case of free-
slip, particle populations are reflected such that the angle of
reflection is the same as the angle of incidence. Finally for the
case of diffuse reflection, the particle populations are reflected
back with equal probability in all directions. Note that the
normal component of particle velocity is reversed for all three
cases ensuring that the zero normal flux condition is satisfied.
Surprisingly, all these types of interactions give the same result
as far as mass transport of the species is concerned. A possible
explanation of this is that for low speeds, the main obstacle
to transport of any given species tangential to the obstacle
wall is not the wall itself, but the species getting transported
in the opposite direction. This is what one would expect in
the continuum regime where collisions between molecules are
much more common than collision of molecules with the wall.
Thus, in a counter-diffusion problem, the only significant effect
of obstacles is to absorb the normal momentum of particles
of all species. Out of the three cases, implementing the no-
slip condition is the easiest and furthermore, the bounce-back
condition is very easy to implement for complex geometries
and it was therefore selected for use in this work.

To implement the condition of zero velocity of all
species on the surface of a solid obstacle in the LB model,
equations (11) and (15) are used to calculate unknown PDF
values by setting u = 0. These unknown PDF values
are calculated for three possible configurations illustrated in
figure 2(c). The calculation for other configurations is similar
and can be obtained using symmetry. For locally flat surfaces
like point 1 in figure 2(c), the unknown PDF values after
streaming are {f4, f5, f6} and these are obtained using

f4 = f8 f5 = f1 f6 = f2. (41)

In addition to equation (41), a zero gradient condition is also
imposed on the particle number density (of all species) at the
obstacle surface along the local normal. For convex corners

like point 2 in figure 2(c), the PDF value after streaming are
obtained using

f3 = f7 f4 = f8 f5 = f1. (42)

The zero concentration gradient condition is not imposed for
convex corners. Finally, for concave corners like point 3
in figure 2(c), the unknown PDF values after streaming are
{f1, f2, f3, f4, f8} and these are obtained using

f1 = f5 f2 = f6 f3 = f7, (43)

f4 = f8 = 1
2 {ρ − [f0 + f1 + f2 + f3 + f5 + f6 + f7]}. (44)

The density ρ in equation (44) is obtained by extrapolation
in the normal direction from the domain interior. Note that
the simpler equation (15) for determining species velocity was
used to develop expressions for PDF values at obstacles, while
the slightly more complex equation (16) was used to obtain
PDF values at the left and right boundaries.

3.4. Summary of LB algorithm

Species mole fractions are initially assigned the same
values over the entire domain and these are their respective
values at x = 0. The x-component and z-component of
species velocities in the fluid region are initially set to zero.
For lattice points that lie on an obstacle boundary, both
velocity components are zero at all times. The following six
steps are then repeated, in the order shown, for all species
simultaneously, until a steady state solution is reached.

1. Calculation of equilibrium functions.
2. Calculation of the collision terms.
3. Streaming and interpolation of PDF values.
4. Calculation of unknown PDF values at x = 0 and x = L.
5. Calculation of unknown PDF values at obstacle

boundaries.
6. Calculation of density, velocity, mole fractions, etc.

As a check, the total concentration is calculated at the end
of every calculation in the LB model and it is confirmed that
this remains constant at all lattice points irrespective of the
numerical parameters used and whether or not obstacles are
present in the domain as long as the mass transport occurs in
the continuum regime. Conservation of mass is checked by
integrating the mole flux of all species along z at x = 0 and
x = L. The numerical parameter space over which solutions
can be obtained is restricted by the grid size used, the low Mach
number constraint that imposes limits on particle velocities, the
low Knudsen number constraint that limits mass transport to
the continuum regime and the constraint that binary diffusivity
values be large enough to simulate positive inter-diffusion
between species.

4. Results and discussion

In most of the results to be discussed, it is found that the species
mole flux at x = 0 is close to but not exactly equal to the
corresponding mole flux for that species at x = L except
for some special cases. In addition, it is observed that the
mole averaged mixture velocity (and the mole flux of the inert
species) in the present LB model is not exactly zero for species
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having different molecular weights except at the flux boundary
at x = L. This discrepancy is thought to arise because the mole
flux calculation is based on equation (16), which is an ad hoc
extension of the earlier approach of Shan and Doolen [9] to
three species. In addition, it is important to point out that the
present LB method uses a mole based approach, whereas the
earlier method development [5,7] (for two species) was a mass
based approach.

The LB computations are performed using a SGI Altix
supercomputer with 64 GB of configured memory. Numerical
solutions to the 1D SM equations are obtained using an Euler
integration scheme and numerical solutions to the 2D LE are
obtained using an iterative finite-difference procedure. In
sections 4.1 and 4.2, the LB model is compared with 1D and
2D solutions to the SM equations, respectively. In section 4.3,
more complex geometries are discussed to demonstrate the use
of the LB model for such cases.

4.1. One-dimensional mass diffusion

For 1D mass diffusion, solutions of the mole fraction
distribution are governed by the dimensionless flux, J ∗,
defined in equation (45).

J ∗ = JL/(cT D13). (45)

In equation (45), J = mole flux (mol m−2 s−1), L = domain
length (m), CT = total molar concentration (mol m−3) and
D13 = diffusivity between components 1 and 3 (m2 s−1).
Other dimensionless parameters are the diffusivity ratios
D12/D23 and D13/D23. Comparisons between the LB model
and the physical world are made via these dimensionless
numbers. The mole flux is constant along the z-axis and there
are no obstacles present in the domain.

In order to have a concrete example, calculations are
performed for a H2, H2O and N2 system present in the porous
anode of a solid oxide fuel cell (SOFC) at ambient temperature
(1073 K) and pressure (1 atm). The parameters used are
given by: L = 0.019 1 (m), J = 0.041 5 (mol m−2 s−1),
cT = 11.4 (mol m−3), D12 = 3.37 × 10−4 (m2 s−1), D23 =
0.692 × 10−4 (m2 s−1) and D13 = 1.085 × 10−4 (m2 s−1).
Based on equation (45), these values lead to J ∗ = 0.64.
A normalized length x∗ = x/L is used. At x∗ = 0, the
mole fractions of H2, H2O and N2 are 0.47, 0.03 and 0.5,
respectively. As discussed before, the mole flux of H2 and
H2O at x∗ = 1 is J and −J , respectively. The mole flux of N2

(inert species) at x∗ = 1 is zero.
Solutions to the SM equations for these parameters are

obtained via numerical integration of equations (3)–(5) using
a Euler integration scheme. Direct analytical solutions have
also been developed for this case and used to validate solutions
obtained via numerical integration. The output of the SM
solution is the mole fraction distribution of H2, H2O and N2

from x∗ = 0 to x∗ = 1, and for J ∗ = 0.64, the mole fractions
of H2, H2O and N2 at x∗ = 1 are calculated to be 0.0815,
0.5710 and 0.3475, respectively.

Before the LB solution can be obtained, physical
parameters need to be converted to LB parameters such that
all relevant dimensionless numbers are identical. Note that all
LB model parameters are not in physical units, but in an
equivalent and consistent system of lattice units. It is found that
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Figure 3. Comparison of LB prediction with the SM solution for
J ∗ = 0.64 using actual (a) and tuned (b) molecular weights.
LB parameters (in lattice units): L = 20, J = 0.069, cT = 20,
D12 = 0.337, D23 = 0.069 and D31 = 0.1085.

if diffusivities are too small in the LB model, they can lead to
stability problems. This is because the diffusion relaxation
times in equation (30) then approach a value of 0.5, which
is the limiting value for maintaining positive inter-diffusion
coefficients between species. Thus, the LB parameters should
be such that diffusivities are in the same ratio as actual
diffusivities, but much larger in magnitude. A practical rule
of thumb is to ensure that the diffusion relaxation times are
unity or greater. Other LB parameters (L, cT and J ) can
then be adjusted to maintain the same value of J ∗. The
particle densities at x∗ = 0 are set based on known values of
mole fractions and total molar concentration. The molecular
weights used for H2, H2O and N2 are 2, 18 and 28 (g mol−1),
respectively.

A comparison between the predictions of the SM
equations and the LB model is shown in figure 3(a), where
mole fraction variations of H2, H2O and N2 are plotted against
the normalized length x∗. As expected, the H2 mole fraction
reduces from x∗ = 0 to x∗ = 1 because mass transfer occurs
from higher to lower concentrations. Because the H2 mole
fraction at x∗ = 0 is maintained constant at 0.47, the H2 mole
fraction at x∗ = 1 depends on the imposed mole flux. A
larger mole flux results in lower H2 mole fraction at x∗ = 1.
The H2O mole fraction increases as expected from x∗ = 0
to x∗ = 1, opposite to the direction of H2O mole flux. If
the mole flux of H2O increases, the mole fraction of H2O at
x∗ = 1 increases. Thus, increasing the imposed mole flux
leads to larger concentration gradients for both H2 and H2O.
If J ∗ is too large, the mole fraction of H2 at x∗ = 1 becomes
negative in the SM solution. Although valid mathematical
solutions are obtained using the SM equations for such cases,
negative species mole fractions have no physical meaning. In
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the LB simulation, such a case leads to instabilities. For this
particular case, the largest permissible value of J ∗ to avoid
negative values is J ∗ = 0.78 and thus a lower value is used.
Note that there is no mass transfer of N2 along the x-axis in
spite of the gradient in N2 mole fraction.

It can be seen from figure 3(a) that the prediction of H2,
H2O and N2 mole fraction variations using the LB model is
close to that obtained from the SM equations, but is not exact.
The errors in the mole fraction values at x∗ = 1 are the least
for H2 and the largest for N2. A slight oscillation can also
be observed in the LB mole fraction profiles in figure 3(a),
especially for N2. These errors seem to correspond directly
to the molecular weight of the species. When J ∗ � 1,
the errors between the LB results and SM predictions reduce
considerably. In addition, for a system of gases where
the molecular weights are not widely different, these errors
are small. The system of gases {H2, H2O, N2} used in this
section has a relatively large variation in molecular weights
and represents a somewhat extreme case for the LB model. A
comparison of the mole flux at the inlet and outlet shows a
difference of about 11.1% for H2 and 7.6% for H2O.

An approach to reduce the errors in the LB model by
molecular weight tuning will now be discussed. Actual
binary diffusivity values are calculated based on the molecular
weights of the species involved. However, as the molecular
weights of species can be specified independently of the
diffusivities between the species in the LB model, it is
possible to specify the correct diffusivity values even when
the molecular weights do not correspond to the actual gas
species. This feature can be used to further improve the
accuracy of LB predictions. It is found that the LB predictions
are more accurate when the relaxation times controlling inter-
component diffusivities are such that τ 12

D = τ 23
D = τ 31

D .
It can be seen from equation (30) that if molecular weights are
adjusted according to equation (46), this objective can be met.

M1

M2
= D23

D13
,

M1

M3
= D32

D12
. (46)

To illustrate the effect of tuning this ratio, the prior simulation
was run again with tuned values of molecular weights (M1 = 1,
M2 = 1.56 and M3 = 4.91) and presented in figure 3(b). It can
be seen that there is a remarkable improvement in the accuracy
and LB predictions now exactly match profiles obtained by
solving the SM equations. The tuned molecular weights do
not vary as much as the original values. In addition, it is found
that tuning molecular weights substantially reduces the mole
balance error to 4.48 × 10−6% for H2 and 3.5% for H2O.

In general, given any set of diffusivity values,
equation (46) can be used to calculate the appropriately tuned
molecular weights. Figure 4 plots the percentage error in the
N2 mole fraction at x∗ = 1 against J ∗ using actual and tuned
molecular weights. Note that the error reduces with reducing
J ∗ even when actual molecular weights are used. Thus, the
current model, with actual molecular weights, leads to high
accuracy at low J ∗. Tuning the molecular weights produces
a drastic improvement in accuracy, leading to solutions that
are accurate to within 2% across all J ∗. For the remainder of
this paper, tuned molecular weights are used for three species
unless indicated otherwise. The errors at large J ∗ may be
reduced by use of a more accurate interpolation scheme or
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Figure 4. Effect of molecular weight tuning and dimensionless flux
(J ∗) on the % error in N2 mole fraction at x∗ = 1. LB parameters
(in lattice units): L = 20, J = 0.069, D12 = 0.337, D23 = 0.069
and D31 = 0.1085. J ∗ changed by varying cT .

Figure 5. Mole fraction X1 at x∗ = 1 for binary diffusion around a
square obstacle using different grid sizes in the LB model and using
LE for J ∗ = 0.125, H/L = 12/13, ε = 0.52 and X1 = 0.9 at
x∗ = 0. LB parameters (in lattice units): L = {13|26|39| . . .},
J = 0.2, cT = {104|208|312| . . .} and D12 = 0.2.

by a more accurate boundary treatment. However, for most
mass diffusion problems in porous media, J ∗ tends to be small
and accurate results can be obtained with or without tuning
molecular weights. If the molecular weights of diffusing
species are identical (M1 = M2 = M3), the LB model accuracy
improves dramatically. In this case, the diffusivity values
are also identical and no interpolation is necessary during the
streaming step. It has been verified that the results presented
in this section hold true when the underlying LBM model is
extended to 3D. However, because the geometrical complexity
and computational cost of a 3D simulation is higher by an
order of magnitude, only 2D results have been presented in
subsequent sections.

4.2. 2D mass diffusion around a square obstacle

To validate the LB model for 2D, a domain of size L × H

with a centrally placed square obstruction of size S × S is
chosen (figure 5 inset) with specified mole fraction X1 = 0.9 at
x∗ = 0 and specified mole flux J at x∗ = 1. Periodic boundary
conditions are imposed at the top and bottom boundaries. The
concentration gradient normal to the surface of the square
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(a)

(c) (d)

(b)

Figure 6. H2 mole fraction distribution using the LB model for (a) straight channel, (b) tortuous channel, (c) forked channel and (d) porous
geometry.

obstruction is zero. As before, the solution is governed by the
dimensionless flux, J ∗ = JL/(cT D12). (D12 is used in this
case because there is no component 3.) Additional parameters
for this case are the aspect ratio H/L and the porosity ε =
1 − S2/LH , which is the ratio of flow area to the total area.
The parameter values selected for validation are: J ∗ = 0.125,
H/L = 12/13 and ε = 0.52. At x∗ = 0, X1 = 0.9 and at
x∗ = 1, −cT D12∂X1/∂x = J or ∂X1/∂x∗ = −J ∗.

Since there are only two species, the solution to the mole
fraction distribution X1 over the 2D domain can be obtained
using∇2X1 = 0 (equation (6)). Because the flux of component
1 is mainly along x, the mole fraction X1 gradually reduces
from x∗ = 0 to x∗ = 1. The distribution X1(x, z) is symmetric
about the horizontal centreline. Because of the square obstacle,
X1 at x∗ = 1 varies with z and the results are summarized
using minimum and maximum values of X1 at x∗ = 1. The
minimum X1 at x∗ = 1 occurs at the centreline, at z = H/2,
showing that the effect of the square obstacle is maximum at
this point. Figure 5 shows the results of the numerical solution
for a range of grid sizes, where the band indicates the amount
of variation of X1 at x∗ = 1. For the coarsest grid (14 × 13)
solution of the LE, X1 varies from 0.08 to 0.2 at x∗ = 1. The
grid is successively refined until a grid-independent result is
obtained. The largest grid size used is 131 × 121 and for this
case, X1 varies from 0.38 to 0.44, which corresponds to the
exact or grid-independent solution.

For comparison, the same lattice sizes used in the
numerical solution of the LE are also used in the LB model
simulations. For all LB grids, X1 = 0.9 at x∗ = 0 and J = 0.2
at x∗ = 1. Other parameters used for a 14 × 13 lattice are:
L = 13, cT = 104 and D12 = 0.2, leading to J ∗ = 0.125.
For larger grids, the length (in lattice units) increases and cT

is increased by the same factor, keeping J ∗ constant at 0.125.
As an example, for the 27 × 25 grid, L = 26 and cT = 208.
The molecular weights are M1 = 2 and M2 = 18. Note that

tuning is not required for binary diffusion. Figure 5 plots the
LB results for various grid sizes and good agreement with
the grid-independent LE solution is found for a sufficiently
high lattice resolution. Figure 5 demonstrates that for a given
lattice resolution, the LB method gives more accurate results
compared with the LE solution. The exact order of accuracy
depends on the boundary conditions treatment, and the bounce-
back scheme used has been demonstrated to be between first-
and second-order accurate [11]. As an additional check, the LB
model is used to compute the vector sum J1 + J2 at all lattice
points and this is found to be of the order of 10−2 for both
coordinate directions for this particular case. If M1 = M2, it is
found that J1 + J2 is of the order 10−8. The mole balance error
for H2 and H2O is 12% and 8%, respectively, for the coarse
grid (14 × 13) and reduces to 2.74% and 0.25%, respectively,
for a finer grid (66 × 61). This indicates that conservation
of mass in the LB method improves with the grid resolution.
Compared with the 1D solution discussed in section 4.1, the
maximum permissible J ∗ (in order to maintain positive H2

mole fractions at x∗ = 1) is lower for 2D mass diffusion in the
presence of obstacles. Thus, a larger concentration gradient is
required to accomplish the same amount of mass transfer when
obstructions are present.

4.3. 2D mass diffusion in complex geometries

The previous sections demonstrate that the LB model can
give accurate predictions of both 1D and 2D mass diffusion.
The LB model is now used to demonstrate three-species mass
diffusion in more complex geometries. In general, the SM
equations can no longer be easily solved for such cases, and
the LB model can serve as a useful predictive tool. Four
different geometries in order of increasing complexity are
discussed. In figure 6(a), diffusion occurs through a straight
channel. In figure 6(b), diffusion occurs in a tortuous ‘S’
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shaped channel. In figure 6(c) diffusion occurs through a
forked channel where a single channel splits into two sub-
channels. Finally, in figure 6(d) diffusion occurs through a
much more complicated geometry typical of porous media.
For convenience, the same system of gases (H2, H2O, N2)
and hence the same diffusivity values as in section 4.1 have
been used. At x∗ = 0, the mole fractions of H2, H2O, N2

are 0.47, 0.03 and 0.5, respectively, for all cases. Table 1
lists the LB model parameters (in lattice units) used for the
different geometries and also lists the percentage error in molar
balance at the left and right boundaries for H2 and H2O. The
results for all cases are discussed in terms of the steady-state
H2 mole fraction profiles. H2O diffusion roughly occurs in
the opposite direction to that of H2, while N2 mole fraction
reduces in general from x = 0 to x = L even if N2 transport
is zero, similar to the 1D solutions discussed in section 4.1.

Consider first the straight channel with impermeable
walls. Figure 6(a) shows contours of H2 mole fraction,
and mass transport of H2 occurs in a direction perpendicular
to these contour lines, from higher to lower concentration.
Because the contour lines are perpendicular to the channel
walls, mass diffusion is parallel to the walls and along
the x-axis. In fact, it is found that if the separation between
the walls is not too small, the walls have an almost negligible
effect on mass diffusion and they are similar to insulated walls
in a heat conduction problem. This result is therefore almost
identical to the 1D result discussed in section 4.1 and good
agreement with the 1D SM solution is found with errors of
less than 2.7%. The mole balance error between the left and
right boundaries of the channel for H2 and H2O is 0.25%
and 3.3%, respectively, and these errors reduce further as the
separation between the channel walls is increased. The channel
width along z has a very slight effect on the mass diffusion in
the continuum regime. This behaviour is in contrast to the
advective flow of a single fluid through a confined channel
where walls have a marked effect on the velocity profiles and
the shear stress introduces resistance to fluid flow. No such
resistance is encountered for pure mass diffusion even if the
no-slip velocity boundary conditions are applied at channel
walls. Exceptions to this can occur when there is generation
or consumption of species at the wall surface due to adsorption,
desorption or chemical reactions or if diffusion occurs in the
non-continuum regime. Adding to these additional effects is
part of ongoing work and results will be reported in a future
publication.

Consider next the tortuous channel of figure 6(b). Like the
straight channel, it can be observed from figure 6(b) that there
are no gradients of H2 mole fraction normal to the channel
surfaces. Thus, mass diffusion of H2 again occurs parallel
to the channel walls. However, because of the tortuosity of
the path, the gas has to diffuse over a longer length, creating
an increased resistance to mass transfer. This causes the H2

mole fraction at x∗ = 1 to be considerably lower than a
corresponding straight channel. A lower value of J ∗ = 0.16
is therefore used to maintain a positive H2 mole fraction at
x∗ = 1. The actual (tortuous) length, measured along the
channel centreline over which diffusion occurs is L′ = 61
lattice units. As expected, it is found that the 2D solution
compares well with the 1D SM solution for the same set of
parameters with a longer length L′ = 61. In this case, the

Table 1. LB model parameters for different geometries.

Straight Tortuous Forked Porous
Parameters channel channel channel medium

Grid 22 × 21 22 × 21 141 × 121 151 × 151
size

L 21 21 140 150
J 0.069 0.069 0.069 0.069
cT 21 84 140 600
D12 0.337 0.337 0.337 0.337
D23 0.069 0.069 0.069 0.069
D31 0.108 0.108 0.108 0.108
J ∗ 0.64 0.16 0.64 0.16
% Error 0.25 0.86 0.9 3.4

(H2 mole balance)
% Error 3.31 2.9 2.7 2.1

(H2O mole balance)

medium tortuosity � is defined as the ratio L′/L. The concept
of tortuosity is intuitively easy to understand for this simple
case, but for more complex geometries, it is difficult to isolate
and calculate � in this manner because diffusion pathways can
branch and re-connect in complex ways. From table 1, it can be
observed that the mole balance error for the tortuous channel
is 0.86% for H2 and 2.9% for H2O. These errors reduce when
the grid resolution is increased.

To take the simplest example of path branching, consider
the forked channel of figure 6(c). The geometry is designed
such that the combined width of the two sub-channels is the
same as the width of the parent channel. Figure 6(c) shows
that the H2 mole fraction reduces from x∗ = 0 to x∗ = 1,
as expected. The H2 mole fraction distribution in the sub-
channels is also symmetric because the channel widths and
branching angles are symmetric. However, it is found that the
H2 mole fraction at the end of the forked channels (at x∗ = 1)
is lower compared with results for a straight channel shown
in figure 6(a), even when all dimensionless parameters are
identical. This observation can once again be explained based
on the concept of tortuosity. It can be seen that for part of the
forked channel, the gas in the two sub-channels has to diffuse
along a diagonal direction, which is larger in length compared
with the corresponding horizontal direction along x. The larger
the branching angle, the larger will be this length difference.
Thus, a larger H2 concentration drop occurs for the same H2

mole flux. Both in this case and the previous case of a single
‘S’ shaped path, the diffusion coefficients Dij can be modified
using the channel tortuosity to obtain a so-called effective
diffusion coefficient Deff

ij , defined such that Deff
ij = Dij/�.

In this case, the actual domain length L is retained, and the
effect of longer paths is accounted for by using Deff

ij in all the
calculations. The mole balance errors for H2 and H2O are
0.9% and 2.7%, respectively.

Finally, consider the geometry shown in figure 6(d),
designed to resemble a porous medium. This geometry
provides an example of where there is no intuitive or easy
way to calculate tortuosity. In some applications, the porous
geometry can be obtained by electron microscope images,
converted to digital form and used as an input to the LB model.
Based on the currently available computational resources, the
resolution adopted for this case is such that there are at least
4 or 5 lattice points in the flow passages between obstacles.
As expected, figure 6(d) shows that the mole fraction of H2
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reduces in general from x∗ = 0 to x∗ = 1. The mole fraction
contours can be seen to intersect the solid obstacles normal to
the surface, indicating that mass diffusion of H2 occurs parallel
to the obstacle surface. If non-continuum effects are ignored,
low porosity leads to a higher resistance to mass diffusion
because flow paths become more and more tortuous. Although
not apparent in figure 6(d), the H2 mole fraction varies with z

at x∗ = 1 and the lowest H2 mole fractions are usually found
close to solid obstacles, much like the result for the square
obstacle in section 4.2. The mole balance errors for H2 and
H2O are 3.4% and 2.1%. These errors can be reduced further
by increasing the lattice resolution.

Note that the tortuosity factor for a given geometry can be
calculated if required. For example, in figure 6(d), the average
H2 concentration at x∗ = 1 from the LB model is found to be
0.1. Using the 1D SM solution procedure from section 2, it
can be found by trial and error that a similar H2 mole fraction
can be achieved for a geometry without obstructions when Dij

are all reduced by a factor of 3.8, implying that � = 3.8 for
the porous geometry of figure 6(d). Numerical experiments
using the LB model can be carried out to establish tortuosity
factors for arbitrary geometries for use in simplified, 1D mass
transport models. However, 1D models cannot be used for
optimization of the porous geometry. The LB model is able
to calculate detailed mass transfer through a porous medium
without any empirical modifications to the binary diffusivity
values.

5. Conclusion

LB models have developed to the point where continuum,
multi-component mass diffusion through complex geometries
can be simulated accurately. This work is part of an ongoing
development to employ LB models for modelling multi-
component gas diffusion through porous media. The two main
contributions of this work are enhanced boundary treatment
for the multi-component LB model based on average particle
velocity and a validation of the LB model against the solutions
to the SM equations. One- and two-dimensional tests for
three species indicate that the LB model developed in this
study can be used for more complex geometries provided a
sufficiently high resolution lattice is used. Examples of mass
transport through complex geometries illustrate the effect of
medium tortuosity. While tortuosity provides an intuitive
understanding of mass transport through complex geometries,
it is not required as a parameter for LB calculations. Numerical

experiments using the LB model can be carried out to establish
tortuosity factors for arbitrary geometries for use in simplified,
1D mass transport models. However, 1D models cannot be
used for the optimization of the porous geometry. The LB
model is able to calculate detailed mass transfer through a
porous medium without any empirical modifications to the
binary diffusivity values. The effect of porous geometry on
mass transfer can thus be directly probed.

Ongoing efforts in this direction include broadening the
range of application of this multi-component LB model to
non-continuum flow regimes so that high Knudsen number
diffusion can be modelled and to include adsorption and
chemical reaction dynamics at wall surfaces. Additional work
to improve the accuracy of the proposed method for high
J ∗ is also worth pursuing. When used in conjunction with
advanced 3D imaging techniques, extensions of the current
model to 3D will provide a very powerful tool for the analysis of
multi-component mass transport problems through real world
geometries. One such application related to solid oxide fuel
cell electrodes is reported in [12].
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